Nonstandard linear recurring sequence subgroups in finite fields and automorphisms of cyclic codes

نویسنده

  • Henk D. L. Hollmann
چکیده

Let q = pr be a prime power, and let f(x) = xm − σm−1x m−1 − · · · − σ1x− σ0 be an irreducible polynomial over the finite field GF(q) of size q. A zero ξ of f is called nonstandard (of degree m) over GF(q) if the recurrence relation um = σm−1um−1 + · · · + σ1u1 + σ0u0 with characteristic polynomial f can generate the powers of ξ in a nontrivial way, that is, with u0 = 1 and f(u1) 6= 0. In 2003, Brison and Nogueira asked for a characterisation of all nonstandard cases in the case m = 2, and solved this problem for q a prime, and later for q = pr with r ≤ 4. In this paper, we first show that classifying nonstandard finite field elements is equivalent to classifying those cyclic codes over GF(q) generated by a single zero that posses extra permutation automorphisms. Apart from two sporadic examples of degree 11 over GF(2) and of degree 5 over GF(3), related to the Golay codes, there exist two classes of examples of nonstandard finite field elements. One of these classes (type I) involves irreducible polynomials f of the form f(x) = xm − f0, and is well-understood. The other class (type II) can be obtained from a primitive element in some subfield by a process that we call extension and lifting. We will use the known classification of the subgroups of PGL(2, q) in combination with a recent result by Brison and Nogueira to show that a nonstandard element of degree two over GF(q) necessarily is of type I or type II, thus solving completely the classification problem for the case m = 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

Quasi-cyclic codes as codes over rings of matrices

Quasi cyclic codes over a finite field are viewed as cyclic codes over a non commutative ring of matrices over a finite field. This point of view permits to generalize some known results about linear recurring sequences and to propose a new construction of some quasi cyclic codes and self dual codes.

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Introduction to codes from a representation-theoretic perspective

1 Lecture 1: Codes and groups 2 1.1 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Conway polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Linear codes: generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1...

متن کامل

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0807.0595  شماره 

صفحات  -

تاریخ انتشار 2008